~Midpoint Velocity ~

Physics 203
Profs. MARTENS YAVERBAUM, BEAN
John Jay College of Criminal Justice, the CUNY

I. Midpoints \& AVERAGES

A particle starts out from rest (i.e. initial velocity is zero), but with an acceleration of $4 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
The particle continues to accelerate at a constant rate of $4 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 20 seconds.
A) What is the particle's instantaneous velocity at $\mathrm{t}=0 \mathrm{~s}$?
B) What is its instantaneous velocity at $\mathrm{t}=0.5 \mathrm{~s}$?
C) What is its instantaneous velocity at $\mathrm{t}=1 \mathrm{~s}$?
D) What is its instantaneous velocity at $\mathrm{t}=1.5 \mathrm{~s}$?
E) What is its instantaneous velocity at $\mathrm{t}=2 \mathrm{~s}$?
F) What is its instantaneous velocity at $\mathrm{t}=10 \mathrm{~s}$?
G) What is its instantaneous velocity at $\mathrm{t}=20 \mathrm{~s}$?
H) Draw a neat, careful, scale graph of the particle's instantaneous velocity vs. time.
I) What is its $\boldsymbol{A V E R A G E}$ velocity during the first TWO seconds of its trip?

HINT \#1: Notice that there is a STEADY change in velocity per time?
HINT \#2: Think about Problem VI above!
J) What is its $\boldsymbol{A} \boldsymbol{V E R A G E}$ velocity for the WHOLE 20-second trip?

HINT: Same hint - think about Problem VI above!

II. The First Second

A bicycle is at rest. It then accelerates at a constant rate of $2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. How far does it travel in the first second (of this accelerated motion)?

Hint \#1: first find the bicycle's average velocity during this trip.
Hint \#2: to find average v, think about problems IV \& I.
Hint \#3: AFTER you find average velocity, go back to the definition of average velocity to try to find how far the bicycle went.
Hint \#4: The answer is not 2 meters.

III. A Practice Proof

Given variables a, b, c, d, and z, and given that: $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{c}$

$$
\text { and that: } \quad d c-d a=z
$$

$$
\text { show that: } d b=z
$$

